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Abstract

The symbol of the Hessian for an aeroelastic optimization model problem is ana-

lyzed. The flow is modeled by the small-disturbance full potential equation and the

structure is modeled by an isotropic (von K£rm£n) plate equation. The cost function

consists of both aerodynamic and structural terms. In the new analysis the symbol of

the cost function Hessian near the minimum is computed. The result indicates that

under some conditions, which are likely fulfilled in most applications, the system is

decoupled for the non-smooth components. The result also shows that the structure

part in the Hessian is well-conditioned while the aerodynamic part is ill-conditioned.

Applications of the result to optimization strategies are discussed.
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1 Introduction

Lately, there is a growing interest in Multidisciplinary Design and Optimization (MDO)

[1]-[4]. An important problem in that field is the aeroelastic optimal design problem (for

example, [5]-[7]). In this problem there are two coupled disciplines: aerodynamics and

structural analysis. The problem is to compute the aerodynamic shape and structural rigidity

such that some given cost function is minimized.

The purpose of this paper is to demonstrate new analysis of Hessians for MDO problems

on the above aeroelastic optimization problem and to draw some practical conclusions. The

approach is to consider a simple model problem and compute the symbol of the Hessian near

the minimum for the non-smooth frequencies. The Hessian contains curvature information

which is essential for the solution of ill-conditioned optimization problems. Hessian symbols

were previously computed for smoothing predictions in the development of multigrid one-shot

methods [8]-[11] and lately for the analysis of inviscid aerodynamic optimization problems

[12]. The analysis in this paper indicates that for the non-smooth components the system

is decoupled under certain conditions, which are likely fulfilled in most applications. The

analysis also shows that the structures part in the Hessian is well-conditioned while the

aerodynamics part is ill-conditioned.

One consequence of this result is that if the decoupling condition holds the solution of

such problems can be achieved in two stages. In the first stage, the MDO approach should

be taken on a coarse model; that is, the flow and the structure equations are considered

simultaneously during the minimization, which is a more complex problem than optimizing

the decoupled individual disciplines problems. In the second stage, a refined CFD code for

the flow and a detailed finite element code for structure should be used in a serial algorithm in

which the shape is optimized relative to aerodynamic considerations, followed by structural

optimization limited to a given shape that under flow conditions it will twist and bend to the

aerodynamic optimal shape [13, 14]. This approach should result in a good approximation

of the multidisciplinary optimal solution.

A second consequence is that if the decoupling condition does not hold, and thus the two

disciplines are coupled, a multidisciplinary algorithm is necessary and a preconditioner for

the coupled system is necessary to obtain effective convergence.

The paper outline is as follows. In Section 2 the optimization problem is formulated.

In Section 3 the necessary conditions for a minimum are derived with the adjoint method

and their relation with the Hessian is discussed. In Section 4 the symbol of the Hessian for

the non-smooth frequencies is derived by using local mode analysis. In Section 5 decoupling

conditions and multidisciplinary preconditioners are derived. In Section 6 applications of

the result are finally discussed.

2 Problem Formulation

In this section the aeroelastic analysis problem and the optimal design problem are presented.

The aeroelastic analysis problem couples the full potential flow equation with the isotropic

von K£rm£n plate equation to give the pressure distribution over the plate, p, and the

plate deformation, W, for a given plate shape, a, and rigidity distribution, D. The design



problem is to computethe "best" shapeand structural rigidity sothat a givencostfunction
is minimized.

The cost function is composedof aerodynamicand structure parts. The aerodynamic
costfunction estimatesperformanceby measuringthe difference,in L2 norm, of the pressure

distribution from a desired one. The structure cost function gives a measure of the structural

weight and penalizes structural deformation.

Since our interest is in a local mode analysis of the Hessian near the minimum, we consider

the small disturbance equations of flow over a flat plate.

2.1 The Flow Model

We choose the full potential equation as a model for the flow. It approximates inviscid

flow characteristics and is used in applications for aerodynamic optimal design (for example,

[15]). For the analysis of the cost function's Hessian in the vicinity of the minimum it is

enough to consider small perturbations of the shape from the optimal solution. The resulting

changes in the potential satisfy the steady state small disturbance full potential equation.

The geometry is taken to be half-space fl = (x,y, z _ 0), where the x axis is the stream-

wise coordinate, y is the coordinate perpendicular to the stream and parallel to the plate

(spanwise direction), and z is in the normal direction to the plate.

The Aerodynamic State Equation:

L¢ = 0 z _> 0 (2.1)
Be = C(a + W) z = 0

with the following definitions of the interior operator, L, and boundary operators, B and C,

L = (1 - M2)O_x + Ovu + O,z

B=Oz
C = UooOx

(2.2)

where Uo_ is the free stream velocity, M is the Mach number, with the following far-field

boundary conditions:

Inflow Boundary Condition

Subsonic: ¢_ = U_o

Supersonic: ¢_ = U_ and ¢ = 0 (we assume that the normal free stream velocity, Vow, is

zero).

Outflow Boundary Condition

Subsonic: ¢, = U_o

Supersonic: No Boundary Condition.

The missing low-order terms in the boundary condition of (2.1) vanish if the analysis is

performed around a fiat shape.
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2.2 The Structural Model

The structural model consists of the isotropic von K£rm£n plate equation for the displace-

ment W [16, 17]:

G(D, W) = pC¢ z = 0 (2.3)

with the following definition of the the operator G:

G(D, W) = (DW_)_x + (DW_y)yy + u[(DWyy)_:_ + (DW_:_)yy] + 2(1 - u)(DW_y)_y, (2.4)

where D is the plate rigidity distribution, p is the flow density and u is the Poisson ratio. In

two space dimensions Eq.(2.3) reduces to the beam equation:

(DW_)_: = pU_¢_ z = 0. (2.5)

The boundary conditions for the plate are that it is clamped at y = 0 (or at x = 0 for a

beam) and free at the other boundaries:

W(x,O) = Wy(x,O) = O.

However, Eq.(2.3) is elliptic, so the effect of a high-frequency error component in the deflec-

tion W is local, and therefore the plate boundary conditions do not play a role in the local

mode analysis.

2.3 The Cost Function Model

The definition of the cost function is not unique and depends on the specific application

under consideration. In general the requirement of the aeroelastic optimal design is that it

have maximum aerodynamic performance and minimum structural weight and deformation.

Some of the desired features of the final design are in many cases modeled by a set of

inequality constraints, as is the case for the minimum deformation requirement. However,

for the purpose of this paper we will avoid inequality constraints by adding a term to the

cost function which penalizes deformation. In the following the different terms composing

the cost function are discussed.

• The Aerodynamic Performance Term

A common aerodynamic cost function is drag (or drag over lift). However, in inviscid

aerodynamic optimization models a commonly used cost function is pressure matching (for

example, [18]-[22]). In potential models the pressure, p, is related to the potential, ¢, by the

Bernoulli relation

This results in the following cost function term

F,e,'o = _(¢_- f*)2do-

where do" is an integration element on the shape F. The target distribution, f*(x, y) E L2(F),

is related to the desired pressure distribution, p*(x, y), by the relation

p'(x,y)
f*(x,y) --



• The Structural Weight Term

Another important factor in aeroelastic design is the resulting weight of the structure. In

practice the weight is measured by the sum of the weights of all the components composing

the structure. In plate models the weight is related with the plate rigidity, D, and is given in

the following table, where E is the Young modulus of elasticity, b and h are the cross section

D

beam Ebha

plate EI_
12(1-_2)

weight

Pv fr bhdx

Pp fr tdxdy

components of the beam, pp is the structural density, and t is the plate's thickness.

In both cases the weight of the structure is proportional to D-_ where d is the space

dimension:

F _eight o( D'_ da.

• The Structural Deformation Term

As a result of the pressure, p, exerted on the plate by the flow, the structure will deform

its shape by W (bend and twist). In practice the structure is designed so that the amount of

deformation will be constrained not to exceed some given limits. In this model we account

for this requirement by penalizing the deformation which is measured by the work of the

aerodynamic pressure on the plate, pW. This will add to the cost function the following

term (using the Bernoulli relation):

F d_l°r'_ = pU_o fr ¢_Wda.

2.4 The Optimization Problem

We define the cost function, F = F(¢, W, D), to be

F(¢,W,D)=71fr(¢_- f*)2da +72 frD_da +73 fr¢,Wda (2.6)

where 71,72,73 are parameters. The cost function is a map from a function space to _.

The minimization problem is to find a shape function, a, and rigidity distribution, D,

such that the cost function is minimized subject to Eqs.(2.1) and (2.3). We assume the

existence of a solution for both the state equations and for the optimization problem (a

rigorous treatment of existence and uniqueness of solutions is beyond the scope of this

paper).

3 Adjoint Formulation and the Hessian

In this section the necessary conditions for a minimum are derived with the adjoint method

[19]-[24]. The necessary conditions are given as a set of state equations (the analysis prob-

lem), costate equations (the adjoint problem) and design equations (optimality conditions).
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Then the relation betweenthe designequation residualsand the Hessianof the costfunction
is discussed.This relation will be usedin the next sectionto derive the Hessian'ssymbol.

3.1 The Necessary Conditions for a Minimum

The Lagrangian is a functional defined by

/2(¢, W, a,D,_,A,r]) = F(¢, W, D) + fr _(B¢- C(a + W))do+ (3.1)

fn ALCdf_ + fr 7/(G(D, W) - pC¢)da

where _ = _(x,y), rl = rl(x,y) and A = A(x,y,z) are Lagrange multipliers. The first order

necessary conditions for a minimum are derived by the requirement that the first order

variation of the Lagrangian vanish (this is known as the adjoint method and the resulting

conditions are known as the Kuhn-Tucker conditions).

When considering the variation of the structure state equation a linearization is per-

formed,

G(D*+D,W*+I;V)=G(D*,W*)+GD(W*)D+Gw(D*)I2V+h.o.t. (3.2)

where D and I_ are small perturbations of the displacement and rigidity from the optimal

solution W* and D* respectively, and where the linearized operators GD and Gw are defined

as follows

GB(W')D " * - * - * DuyW_ ] + 2(1 - *= - u)D::yW;y (3.3)D:=W_x + DyyW_ + u[D,:_W£y + - .

Gw(D')I_ = G(D*, 1_).

Formally, W* and D* serve as non-constant coefficients in the linearized structure operator.

In the following the costate and design equations are given.

Costate Equations

[,A=O z>0

I]_ + p_ = F_ z = 0
Gw(V*)r/+ (_A = -Fw z = 0

(3.4)

Inflow Boundary Condition

Subsonic: A_ = 0

Supersonic: No Boundary Condition

Outflow Boundary Condition

Subsonic: A_ = 0

Supersonic: A = 0 and A_ = 0

Design Equations

CA=O z=0

(_D(W*)_ + F_ = 0 z = 0
(3.5)



where

.Pc = -2")'1(¢x- f*)x- "73W_

Fw = 73¢x
1--d

FD=TD _ ,

and where the operators in the adjoint and design equations (3.4-3.5) satisfy

L=L

C=-C

(_w(D*) = Gw(D*)

= GD(W').

(3.6)

The adjoint boundary operator ]3 corresponds to the normal derivative, Oz, applied to a

solution of the interior costate PDE, A, when using the adjoint far-field boundary conditions.

We assume the existence of a solution to the costate equations.

3.2 The Relation of the Hessian with the Necessary Conditions

If the state and costate equations are satisfied, in the strong sense, then the variation of the

Lagrangian (3.1) is equal to the variation in the cost function and is given by

where & and b are variations in the design variables. Therefore the quantities multiplying

& and/:) in (3.7) are the sensitivity gradients of the cost function with respect to the design

variables, when computed on the constraint manifold:

gl = CA

g2 = (_D(W*) T] _- FD. (3.8)

The state and costate equations, (2.1), (2.3) and (3.4), give an implicit relation between the

costate variables and the design variables:

A = A(c_, D)
q = _/(a,n). (3.9)

Using equations (3.8) and (3.9) we can write the following relation which holds near the

minimum (a* and D* denote the optimal value of the design variables a and D, respectively):

g](A(a* + 5, D* + D)) = HH& + HI2D + h.o.t. (3.10)
g2(D" + O,7/(a" + &,D* + D)) = H21(_ H- H2:D + h.o.t.

where at the minimum

gl(A(a*, D*)) = g2(D*,Tl(a',D*)) = O.

We conclude that on the constraint manifold, near the minimum, the Hessian of the cost

function relates the errors in the design variables with the residuals of the design equations

(sensitivity gradients). In the next section we will use this fact to calculate the symbol of
the Hessian.



4 Derivation of the Hessian's Symbol

In the following section we compute the symbol of the Hessian with local mode analysis.

Hessian symbols were previously computed for smoothing prediction in the development

of multigrid one-shot method [8]-[11] and lately for the analysis of inviscid aerodynamic

optimization problems [12]. In the following the local mode analysis is outlined.

The analysis is performed in the vicinity of the minimum where the design variables are

assumed to have an error & and /). We assume that the state and costate equations are

satisfied and consider the errors in the state and costate variables (¢, W, A, 4) with respect

to their value at the optimal solution. These errors are assumed to satisfy homogeneous

equations similar to Eqs.(2.1,3.4, 3.5), and a linearization of Eq.(2.3). We then consider the

high-frequency errors in the design variables and compute an explicit solution of the problem

in terms of exponential functions in a half-space. Then with a standard procedure the

problem in a half-space is reduced to the boundary. On the boundary we study the mapping

from the transformed design variables errors to the residuals of the design equations, (gl, g2).

The symbol of this mapping gives the eigenvalues of the Hessian.

4.1 Fourier Representation

We start with the Fourier representation of the solution in a half-space and perform local

mode analysis. Consider errors in the solution of the form

_(x, y) = _(_1,_)_(_,_÷_)
D(x,y) : D(o21,o32)ei(wlx+w_y).

(4.1)

As a result, the errors in the state and costate variables are assumed to have the following

form:

i(x,y,z) = i(_,_:,_)_ _(_'+_÷_)
w(_,y) = w(._,._)_(_+_)

(4.2)

Before computing the relation between the state and costate error symbols, (¢, _, I)V, ,)), and

the design error symbols,^ (5, D), we reduce the problem to the boundary by eliminating wa

from the symbols ¢ and _.

4.2 Reduction to the Boundary

The reduction to the boundary is done by eliminating co3 from the symbol expressions using

the interior equations. The following discussion regarding the choice of w3 was done in [12]

and is repeated here for completeness.

The term ¢ satisfies the interior equation for ¢:

L¢(co,, co2, wa)e i(_'_+_':y+_) = 0. (4.3)



Assuming a non-trivial solution, q_# 0, Eq.(4.3) results in an algebraic relation between wl,

_2 and _3:

(1 - M2)w 2 + w_ + w32 = 0. (4.4)

The choice of wz should be done such that it will result in a physical solution. We differentiate

between subsonic and supersonic flows.

4.2.1 Subsonic Flow

In the subsonic regime (M < 1) the physical solution is given by

w3 = ik/w_(1 - M 2) + _,

which corresponds to decaying solutions:

@(x, y, z ) =  (W1,o32)ei(wlxTw2Y)e

V,Z) =

In that case the symbols of the boundary operators, B and ]3, are given by (recall that B

and B are the normal derivatives applied to a solution of the interior state and costate PDE

respectively)

/3 = h = -_w_(1 - M 2) +w 2. (4.5)

4.2.2 Supersonic Flow

We differentiate between two supersonic cases which are determined by a flow speed denoted

M_ and given by

Me= 1+._11. "

The case 1 < M < M_ results in the same symbols for/3 and B as for the subsonic flow case

(Eq.(4.5)).

In the case M_ < M both signs of wz in (4.4) correspond to physical solutions. The

positive root correspond to the characteristic which propagates into the shape, ¢+, and the

negative root correspond to the characteristic which propagates out of the shape, ¢_, (and

a similar expression for A):

_(x,y,z) ----- _+(031,0.)2)e i(wlx+w2y+N/]w_(1-M2)+w_lz) + _-(¢dl,O.J2)e i(wlx+w2y-V]w21(1-M2)+w_[z).

(4.6)

Since the inflow information does not change as a result of a shape perturbation, the

following holds:

= 0. (4.7)

In the same manner the outflow characteristic of the adjoint is not changing as a result

of a shape perturbation:

A_(x,y,z) = 0. (4.8)
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Therefore

_(X,y,Z) ----__(O)l,O.)2)ei(wlx+w2y-4'w_(1-M2)+w_lz)

_(X,y, z) = £+(ool,w2)ei(_°_x+_=v+x/[_(i-Mu)+_b)

We conclude that for flow speeds Mc < M the boundary operator B is antisymmetric,

(with respect to the adjoint operation), and the symbols/) and /} are given by

/) = -i41_o_(1 - M 2) + a:_l

= i@w_(1 - M s) + _o221.
(4.9)

^ __

In all flow conditions the multiplication BB results in the same expression:

/?/? = w_(1 - M 2) +w_. (4.1o)

By eliminating wa from the transformed equations the state and costate flow equations can

be written on the surface (_ol, co2) which corresponds to the boundary (x, y).

4.3 Treatment of the Structure Equations

In this subsection we give a short note concerning the transformation of the structure state

and costate equations. The structure state and costate equations contain non-constant

coefficients which should be frozen prior to the local mode analysis. The structure state and

costate error equations are given by (see Eqs.(2.3,3.2,3.4))

GD(W*)D + Gw(D*)I?V = pC¢ z = 0

(_w(D*)O + C_ = -Fw z = 0
(4.11)

where /), 1_, ¢, f/ and _ denote the error variables, Fw denotes the error in Fw, and the

operators GD and Gw are defined in (3.3). Since Eqs.(4.11) have variable coefficients, D*

and W*, it is necessary to freeze them around a point on the boundary. This procedure is

justified as long as the errors in the design variables are highly oscillatory compared to W*

and D*. We denote the values of W*(x, y) and D*(x, y) at a point (x0, y0) on the boundary

by Wd and D;, respectively.

4.4 The Coupled State and Costate Equations in Fourier Space

In terms of their Fourier representation on the boundary, the state and costate error equations

are given by the following matrix form:

(..0 0 ( . )-pC Gw(Do) 0 0 -GD(W_)D

-:'_ -&w b .8 _ =
_'w¢ 0 _ _w(D_) _ 0

(4.12)

9



The various symbols are given explicitly by

F+w = -i73wl

fi'W¢ = i'y3wl

0w(D_) . 2 )2= Do(w 1 + w_ + 1.o.t.

C = iU_wl.

(4.131

Note that the terms originating in the cost function serve as a coupling symmetric block

between the state and costate systems.

4.5 The Symbol of the Hessian

The design equations residuals, in the transformed space, are given by

__. ^

_1 = CA
_ = OD(W:) )O + kDD( D_lb (4"14/

where

, (FDD=72(-d) D_
2

and the symbols gl and g2 are the symbols of the sensitivity gradients gl and g2, respectively

(see(3.8)).
Inverting the system (4.121 and substituting A and _ in the symbol of the design residuals

(4.141 results in a relation between the residuals of the design equations and the errors in

the design variables. In Fourier space,

(4.15)

where the matrix/2/0 is the symbol of the Hessian, as discussed in Sec. 3.2. /-tll is the symbol

of the^aerodynamic optimization Hessian, /:/22 of the structural optimization Hessian, and

//12, H21 are the coupling terms. In the following, the terms//0 are given explicitly:

//,, = -C2Gw(/:'¢¢0w +^ 2pC[_¢w) (4.161

(hOw - 0_p)(Baw - CO)

//12 ---- OOD(OP_OW + [_PcwGw._̂ + flO2fi'_c_W) (4.171

(hOw - O:p)(Baw - CO)

O0_(OL_Ow+ hLwOw + pO2Lw)
/21 (4.181

(hOw - O:p)(hOw - O_p)

//22= ()0_(/_¢¢0+ (B._̂+h)l_¢w)+ FDD. (4.19)
(hOw - 52p)(Baw - 5_p)
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Since Gw is a fourth order polynomial in 0.)1,2, 0D,/_¢¢, B and B are of second order, Few

and C are first order, and FD is of zero order, the principal parts of the above expressions

(the asymptotic limits of high-frequencies), are given by

-0%¢ _¢ (4.20)
i-In_ BB*_ - 271U_Ivan(1- M2)+ ¢o22[

C2GDF¢¢ 2"ylU2 W4(Wl(W_)zz q- vW_)yy) +w2(W_)yy + vW_)xz) + 2WlW2(1-1z)W_a:y)&_ = .&__
[_o12(1- M 2) + w_[. (oa_ + w22)2

Note that for simplicity we assumed a complex representation of the errors, (4.1), and

obtained a complex Hessian symbol. If considering a real representation, i.e.,

_(_, v) = a(_,_)_ _(_'_+_)+ _o_j(_, _)_-_(_+_)

where 5 _°'_j is the complex conjugate of &, and a similar expression for/), then the resulting

Hessian symbol is real and symmetric.

4.6 Discretization and the Condition Number

In practice the problem is solved numerically and thus discretization is introduced. Therefore

the analysis should be performed in the discrete space and the Hessian will depend on the

specific discretization. For the "ideal" discretization, the symbol of the Hessian is equal to

the differential one with the substitution

(CO1 0.)2)__--(_1 h),
' hi' h_

where (ha, h_) are the mesh sizes in the (x, y) directions, respectively, and where 0a and 0_

vary in the domain [-Tr, r].

Note that "high-frequencies" are those which obey wi >> c for some constant, c, which is

determined by the different parameters in the problem. In the discrete space this corresponds

to 0i >> chi. Since the constant c is independent of the mesh-size h, as the grid is refined the

portion of high-frequencies in the spectrum increases and therefore the approximation taken

by the local mode analysis above is more accurate for a larger part of the spectrum. This is

not surprising since as the grid is refined its resolution increases while the resolution of the

smooth components remains unchanged.

The maximum eigenvalue of each of the disciplinary Hessians is estimated by

Unfortunately the lowest eigenvalue cannot be estimated by the procedure above since this

is precisely the spectrum range in which the approximation taken by the local mode analysis
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does not hold. However, the lowest eigenvalue is a fixed number, independent of the mesh-

size, and therefore the condition number of the Hessian is proportional to Am_,. For a

two-dimensional flow over a beam, (w2 = 0), we get for the aerodynamic part of the Hessian

(see Eq.(4.20))

2"/1U_ 7r2 1

A,_ = 11 - M21 h _"

We conclude that the aerodynamic part of the Hessian is ill-conditioned and its condition

number is increasing as the grid is refined (see [12] for further discussion). The structure's

symbol (4.22) approaches a constant, for the high-frequencies, independent of the mesh-size.

We therefore conclude that the structural optimization problem is well-conditioned.

5 On the Coupling Between Aerodynamic and Struc-

tural Design

In the previous section we computed explicitly the Hessian's symbol. The coupling between

the two disciplines, during optimization, is determined both by the off-diagonal terms in

the symbol of the Hessian and by the smoothness of the design variables. We say that the

optimization problem can be decoupled if (see Eq. (4.15)):

I/:/,,_1 > tz:/,_bl (5.1)

(or equivalently if I/W_=_ll> IgloO21). If condition (5.1) holds then the aerodynamic opti-

mization problem can be solved at the first stage, independent of the structural optimization

problem, setting the structural deformation to zero (W = 0). Then, at the second stage,

the resulting shape and potential are given as inputs to the structural optimization problem

(see more details in the discussion). The solution of this two-stage approach will be a good

approximation of the multidisciplinary solution, in the high-frequencies. We emphasize that

if condition (5.1) does not hold then this procedure will result in a poor approximation of

the multidisciplinary optimal solution. In that case a multidisciplinary preconditioner

should be constructed to give a "corrected" disciplinary search directions. This is done by

transforming Eq.(4.15) back to the PDE level. Note that if [/7/21&[ << 1/;/22D1 holds and

condition (5.1) does not hold, the process of first computing an optimal structure and then

computing an optimal shape is not well defined. In the following we examine condition (5.1)

explicitly for two- and three-dimensional flows and illustrate the derivation of a precondi-

tioner for a simple case.

5.1 Two Space Dimensions

In a two dimensional flow over a beam the principal part of the Hessian is given by (see

Eqs.(4.20)-(4.22))

( _,2_k_u_2 _ • )

_w___
I1-M21_1 I1-M2I D_ (5.2)

/:/(w_ >> 1)= 2 ,._______==_a__,u2 w- 1 n*-_ "
I1-M21 D; --_72 o
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In practice the curvature of the deflection in the stream-wise direction, Wgxx, is negligible

with respect to the rigidity, D;, as is the case for airfoils. Setting Wd*_x = 0 in (5.2) results in

a diagonal matrix which implies a complete decoupling between aerodynamic and structure

design.

In case W_:,x is not negligible, let us assume the optimal solution exists and belongs to

the following spaces

aECS(F) and D c Ck(I ")

where s and k are integers. The matrix (5.2) implies

/2/11_ (2(a) 2-s

/£/12b _ W- k (5.3)

and therefore the decoupling condition (5.1) is satisfied if

k > s- 2 (5.4)

i.e., as long as the rigidity D is not much more "rough" than the shape a (D E C*-2(F) or

rougher).

In case condition (5.4) is not satisfied a preconditioner should be constructed. The

disciplinary search directions, 6 and D, are solutions of a PDE which is obtained by the

inverse transform of Eq. (4.15):

-acS_,_,: - b2& = cgl -- bg2 (5.5)
-acD=: - b2D = -bgl - a(g2),,_

with

Jl-M2I

I1-M21 D*

1^ D .-3
C : --_)'2 7.

Using these directions as the search directions, in a multidisciplinary optimization algorithm,

should result in a much more effective convergence properties.

5.2 Three Space Dimensions

In a three dimensional configuration we differentiate between the stream-wise and spanwise
directions. Let us assume that the curvature of the deflection in the stream-wise direction

is negligible, i.e. set Wg,, = 0. As a result the coupling term/412 has the following form:

2 •

/2/12(Wo*=== O) _ 2_, U_ _4 (co_vW_yv + a22 Wdyy + 2colw2(1 - _)Wd_:_ ) (5.6)
DT) I_(1 - M 2) + w_l-(w_ + w_) 2

For the design of the structure in the spanwise direction only, i.e., freezing the stream-wise

design as done in practice for aircraft wing design, the off-diagonal terms in the Hessian

vanish, (wl = 0), and therefore the problem is decoupled.
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For errors in the stream-wise direction only, (i.e. wz = 0), the off-diagonal terms in the
Hessian reduce to

27a U_ vW_yy

D_[1 - M2] "

By a similar argument to the two-dimensional case, if a E C'(F) and D E Cs-I(F) or

smoother then the problem can be decoupled. If the structure design variables belong to a

much rougher space than the shape variables, (D C C s-2 or rougher), then a preconditioner

should be applied similar to Eq.(5.5) with

_ 2_1u_

I1-M21 D*
2 D*-_c = -572

The case a E C s and D E C s-2 needs a more careful examination. In this special case,

the decoupling condition (5.1) implies

IE/I I<< <<1. (5.7)

Let us assume a wing like geometry where a plate of length L is clamped at (y = 0) and free

at the other boundaries. Assume that at the optimal solution the plate is bent towards the

tip (y = L) as a quadratic in y,

= w (5.s)
L 2'

where W up is the maximum deflection at the tip of the plate. In that case, the decoupling

condition (5.7) becomes

24(1 - u2)vW up
Et3L 2 << 1, (5.9)

where E is the Young modulus of elasticity, v is the Poisson ratio and t is the plate thick-

ness. In case condition (5.9) is not satisfied then the problem can not be decoupled and a

preconditioner is required.

6 Discussion and Concluding Remarks

The symbol of the Hessi an for aeroelastic optimization model problem was computed (Eqs. (4.16-

4.19)). The result indicates that for the non-smooth components the system is decoupled

under certain conditions. In two dimensions it is enough to assume that the curvature of

the deflection is negligible, as is the case for airfoils, to obtain decoupling (see Sec.5.1 for

further discussion of the decoupling condition). In three dimensions this requirement is not

enough and unless the rigidity is not much rougher than the shape the system is coupled

(see Sec.5.2).

The result also shows that the aerodynamic optimization problem is ill-conditioned, and

therefore second order information is essential for efficiently solving this part of the problem
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[12],while the structural optimization problem is well conditioned. Thus, it is anticipated
that the numberof optimization iterations required to solvethe multidisciplinary problem
is determinedby the aerodynamicoptimization part of the problem.

We now discussthe application of this result to optimization strategiesfor the solution
of the problem. We differentiate betweentwo basic approaches,the "disciplinary" and the
"multidisciplinary". In the disciplinary approachthe solution of the problem is divided so
that one discipline optimization problem is solvedat eachstage,decoupledfrom the other
discipline. In the multidisciplinary approachboth the analysisand optimization solutions
areperformedin a tightly coupledmanner. Thesetwo approachesarenowpresentedin more
detail.

The Disciplinary Approach - Weak Coupling

A common practical strategy used to solve large aeroelastic shape optimization prob-

lems is the disciplinary approach, i.e., design the aerodynamic optimal shape to give

the best performance and then design a minimum weight structure, restricted to the

aerodynamic shape, that under flow will twist and bend to the aerodynamic optimal

shape [13, 14]:

The Disciplinary Algorithm

i. The aerodynamic shape optimization problem is solved setting W = O,

min_ fr(bx - f.)2 da

subject to

L¢=O z >_O

Be = Ca z = O.

2. The structure minimum weight problem is solved given a fixed

shape and pressure (potential) distribution, i.e.

minD 7 fr D_da + 7' fr ¢,_Wdo

subject to

G(D, W) = pC¢ z = 0

where 7 and 7' are parameters.

3. The final shape, _, is computed such that under cruise

conditions, (given pressure distribution - p), the shape will

deform into the aerodynamic optimal shape a.
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The Multidisciplinary Approach - Tight Coupling

Lately there has been an effort to develop new optimization strategies which couple

the two disciplines tightly during the analysis and optimization computation. This is

known as the MDO approach [1]-[7]. According to this approach after each call to the

optimizer the analysis and adjoint equations are relaxed, or solved exactly, depending

on the feasibility choice (Multi-Disciplinary Feasibility (MDF), Individual Discipline

Feasibility (IDF) or All at Once (AAO), [3]).

The MDO Algorithm

The coupled aerodynamic shape and structure minimum weight optimization

problems are solved simultaneously. In order to achieve efficient conve-

rgence both disciplines gradients play a role in each disciplinary

optimizer (see Eq.(5.5)),

min_,D V1 fr(bz -- f.)2 dx + 72 fr D_dx + 73 fr ¢zWdx

subject to

L¢=O zk0

z=O

G(D, W) = pC¢ z = O.

The aim of the MDO approach is to couple a refined CFD code with a detailed finite-

element structural analysis code to compute the aeroelastic states prior to each optimization

iteration. The computational complexity of the MDO algorithm is much greater than that

of the disciplinary algorithm since at each multidisciplinary iteration both the aerodynamic

and structural optimization problems have to be solved (the MDO approach also introduces

a technical difficulty of joining together two large codes). The result of this paper shows that

under certain conditions, given in Sec.5, which are most likely met for aircraft wing design,

the system is decoupled for the non-smooth frequencies. Therefore, under these conditions

the MDO approach applied on a fine scale model might not be necessary to obtain a good

approximation of the optimal solution. The effect of the smooth components can be captured

by a coarse model containing a relatively small number of design variables and thus can be

solved by the MDO approach with a relatively low computational cost. This will require

simple models for the flow (panel method or small disturbance full potential on a coarse

grid) coupled with a plate model, or coarse finite-element model, for the structure.

If indeed the decoupling condition holds, as discussed, we propose that the problem be

solved in two stages as illustrated in Fig.1. In the first stage, the MDO approach will be

applied on a coarse model. The second stage starts with the solution of the MDO algorithm

and the refined problem is solved with the disciplinary algorithm, thus avoiding the enormous

complexity of the MDO algorithm when applied on the fine scale model. We claim that the

resulting design will be a good approximation of the optimal solution. We emphasize that
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this is possibledue to the loosecouplingbetweenthe two disciplines,otherwisethe proposed
approachwill result in a poor approximationof the optimal designsincethe result will retain
high residualsof the multidisciplinary optimality conditions. In that casethe MDO approach
shouldbe applied also on fine scalesand a preconditioner shouldbe used,as illustrated in
Eq.(5.5), to achieveeffectiveconvergence.

Finally, how far can weextrapolate the conclusionsfrom this model problemto a more
realistic model?
As for the aerodynamicmodel, it is shownin [12] that an identical symbol for the aerody-
namic part of the Hessianis obtainedwhenusingEuler equationsinsteadof the full potential.
The analysisfor the Navier-Stokesequationshasnot beencompletedyet. Shockswerealso
neglectedin the aerodynamicmodel,but wepostulate that they arenot going to changethe
main conclusionsinceshockshavea global effectand arenot likely to affect the conditioning
of the Hessian.

As for the specific modeling which we have chosento analyze, since there are many
differentmodelsfor the costfunction and different constraints dependingon the application,
it is impractical to analyze them all. In the mode] discussed in this paper we used a penalty

term in the cost function to account for constraints on the structure deformation. However,

if using inequality constraints instead of penalty terms it is not clear how the coupling of the

two disciplines will be affected. In practice most of the constraints are not binding at the

solution, and therefore are effectively of small number. When introduced in small numbers,

we anticipate that they are not going to change the basic structure of the Hessian near the

minimum.
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Figure 1: An optimization strategy to solve aeroelastic optimization problems in case of

decoupling as defined in Sec.5. Apply the MDO approach on a coarse model followed by a

disciplinary serial approach on fine scales. The result should be a good approximation of the

multidisciplinary optimal solution.
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